PN

——=——_ CarnegieMellon
—== Software Engineering Institute

Browsers for
Distributed Systems:
Universal Paradigm or
Siren’s Song? |

Robert C. Seacord
Scott A. Hissam

July 1998

TECHNICAL REPORT
CMU/SEI-98-TR-010
ESC-TR-98-010

19980824 061

1 QEIOTIONT ALTTVAD OLIA

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of “Don't ask, don't tell, don't pursue” excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are
available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enroliment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone

(412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

= CarnegieMellon

= Software Engineering Institute

Pittsburgh, PA 15213-3890

Browsers for
Distributed Systems:
Universal Paradigm or
Siren’s Song?

CMU/SEI-98-TR-010
ESC-TR-98-010

Robert C. Seacord
Scott A. Hissam

July 1998

Dynamic Systems

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office

HQ ESC/AXS

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in
the interest of scientific and technical information exchange.

FOR THE COMMANDER

Mario Moya, Maj, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1998 by Carnegie Mellon University.

Requests for permission to reproduce this document or to prepare derivative works of this document should
be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATE-
RIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER IN-
CLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANT-
ABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-pur-
pose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under the clause at
52.227-7013.

Use of any trademarks in this?eport is not intended in any way to infringe on the rights of the trademark
holder.

This document is available through Asset Source for Software Engineering Technology (ASSET): 1350
Earl L. Core Road; PO Box 3305; Morgantown, West Virginia 26505 / Phone: (304) 284-9000 or toll-free
in the U.S. 1-800-547-8306 / FAX: (304) 284-9001 World Wide Web: http://www.asset.com / e-maik:
sei@asset.com

Copies of this document are available through the National Technical Information Service (NTIS). For in-
formation on ordering, please contact NTIS directly: National Technical Information Service, U.S. Depart-
ment of Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides
access to and transfer of scientific and technical information for DoD personnel, DoD contractors and po-
tential contractors, and other U.S. Government agency personnel and their contractors. To obtain a copy,
please contact DTIC directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman
Road / Suite 0944 / Ft. Belvoir, VA 22060-6218 / Phone: (703) 767-8274 or toll-free in the U.S.: 1-800
225-3842.

Table of Contents

Abstract
1 Introduction

2 Definitions
2.1 Browser-Based Design
2.2 Non-Browser Design

3 Issues

3.1 Portability (Crossware)

3.2 Performance

3.3 Functionality

3.4 Security

3.5 Human Factors

3.6 Distribution and Installation

3.7 Upgrading and Component-Based
Development

3.8 Runtime Configuration Management

3.9 Licensing

3.10 Versions

4 Conclusions

References

vii

W

~N 9N

13
15
16

17
18
19
20
23

25

CMU/SEI-98-TR-010

CMU/SEI-98-TR-010

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Figure 8:

Browser-Based Design 4
Distributed Object System 5
Memory Usage 8
Average Start-Up Time (Java Applets vs.

Java Applications) 10

Average Number of Packets Transmitted
(Java Applet vs. Java Application) 10
Average Number of Bytes Transmitted
(Java Applet vs. Java Application) 11
Approaches for Integrating Hypertext
Content 12
Licensing Scenarios 20

CMU/SE!-98-TR-010

CMU/SEI-98-TR-010

Acknowledgements

The U.S. Department of Defense (DoD) office sponsored this work. Special thanks to Kurt
Wallnau and John Foreman for supporting this work. Thanks also to external reviewers Steve
Oesterle (Visigenics), Daniel Dardailler (W3C), and Kevin Samborn, and to SEI reviewers
Dan Plakosh, Tricia Oberndorf, Jeromy Carriere, Lisa Brownsword, Fred Long (SEI visiting
scientist from the University of Wales), Fred Hansen (SEI visiting scientist from the Andrew
Consortium), Eileen Forrester, Suzanne Couturiaux, and Edwin Morris.

CMU/SEI-98-TR-010 v

vi

CMU/SEI-98-TR-010

Abstract

Web-based browsers are quickly becoming ubiquitous in the workplace. Software
development managers are quick to incorporate browsers into a broad range of software
development projects, often inappropriately. The purpose of this technical report is to
examine the technical issues relevant to incorporating browsers as a component of a
commercial off-the-shelf (COTS)-based solution. Issues examined include portability,
performance, functionality, security, human factors, distribution, installation, upgrading,
component-based development, runtime configuration management, and licensing.

CMU/SEI-98-TR-010 vii

viii CMU/SEI-98-TR-010

1 Introduction

Not since the advent of software development toolkits has a technology captured the
imagination of the software development community like browsers. Browsers are being used
to provide the interfaces for an increasingly broad range of applications, from Internet sites
intended largely for entertainment to large government systems. For example, one large
government program is using a browser-based interface to access a database of technical
drawings. While browsers have done a great deal to encourage the development of distributed
systems, we must ask, at what cost? Has the rabid expansion of Internet browsers into all
manner of distributed applications gone beyond the bounds of reasonableness?

An often-applied rationale for the use of browser-based interfaces in the development of
distributed systems is that end users are familiar with their interfaces and have grown
accustomed to using them. Other misconceptions about browsers that we hope to correct
include the following:

e Browser applications are inherently “cross-everything” applications.
e Browsers simpiify the development of any distributed system.

e Browser-based systems are always easier to install and upgrade.

¢ Browsers have robust and well-considered security models.

e Poor performance in browsers is a result of network latency.

In some cases a browser-based design may be optimal — for example, in the development of
a distributed system that is principally hypertext. The problem is that the ubiquity and
popularity of browsers is dangerously misleading and leads to a thoughtless, high-risk
adoption of browser technology in inappropriate settings. By identifying both the benefits
and risks of browser-based designs we hope to educate developers of distributed systems so
that they may make informed decisions about the use of browsers in their systems.

CMU/SEI-98-TR-010 1

2 CMU/SEI-98-TR-010

2 Definitions

To examine the problems surrounding the development of browser-based systems, we must
provide a characterization of browser development and runtime environments. We will also
characterize an alternative approach to implementing distributed systems that does not
require the use of a browser.

2.1 Browser-Based Design

In the runtime environment, the browser is merely the tip of the iceberg. Browsers are used to
establish communications with one or more back-end servers, as shown in Figure 1. Most
commonly, the browser establishes communications with a hypertext transfer protocol
(HTTP) server responding to requests on a well-advertised port (commonly, TCP/IP port 80).
The HTTP server provides browser content, primarily in the form of hypertext markup
language (HTML) pages. The HTTP server may also be configured to communicate with
other specialized servers, such as a directory server or certificate server, to provide services
such as end-user authentication and authorization.

In the context of distributed system development, the combination of browsers and HTTP
servers can be more readily classified as system frameworks in which system logic is inserted
using well-defined interfaces. These well-defined interfaces exist both at the client side (i.e.,
browser) and server side (e.g., HTTP server). Browser capabilities can be extended using
plug-ins or by downloading active content from the server. HT'TP servers may be extended
using a variety of server-side application programming interfaces (APIs). Generally, these
APIs fall into one of two mutually exclusive categories: inter-process communication
mechanisms and specialized intra-process communication mechanisms.

CMU/SEI-98-TR-010 3

Browser HTTP
Static L~ Server
Content LT
* Welcome
Server-side
Interface
Active
Content L Application
Logic

Figure 1: Browser-Based Design

The communication mechanisms that underlie inter-process server-side interfaces have
generally developed independently from any particular HTTP server implementation. Such
mechanisms include the Common Gateway Interface (CGI), Windows™ Common Gateway
Interface (WinCGI), Common Object Request Broker Architecture (CORBA), Open
Database Connectivity (ODBC), and Distributed Component Object Model (COM/DCOM).
It is apparent that many of the application program interfaces (APIs) on this list are not
unique to browser-based designs and, except for CGI and WinCGlI, came into existence
independently of browsers and HTTP servers. As such, these mechanisms are available to a
broad range of client/server systems and not strictly limited to HTTP servers.

Intra-process communication mechanisms that function as server-side interfaces are typically
specific to an HTML server product. Such mechanisms include Netscape Application
Programming Interface (NSAPI), Internet Server Application Programming Interface
(ISAPD), Active Server Pages (ASP), and Server-Side JavaScript (SSJS).

Regardless of the mechanism, much of the interaction between the end user and the system
logic is channeled through the browser’s runtime environment and the server-side interface.
Application state and session management is encapsulated in the HTTP server. Active and
static content in the browser controls presentation management as well as look and feel.
Higher level functionality is performed by system logic in the server.

2.2 Non-Browser Design

Browser-based design is a relatively new paradigm. Prior to the advent of browsers,
considerable research and development effort went into the development of client/server,
three-tier, message-oriented, transaction processing and distributed object models for open
distributed processing. Many of these models use the same inter-process communication
mechanisms enumerated in the previous section for extending server-side functionality.
Contrasting each of these models with a browser-based design would exceed the scope of this
report. Instead, we will focus on distributed object systems as an alternative approach, based
on recent interest in this model [Wallnau 97a].

4 CMU/SEI-98-TR-010

Distributed object systems often use a variety of servers and inter-process communication
(IPC) mechanisms. Communication between objects does not need to be funneled through a
single server. Objects operate on a peer-to-peer level in a federated manner. Subordinate,
hierarchical relationships are used to encapsulate functionality, act as a protocol gateway, or
restrict access through a proxy.

Figure 2 shows an example of a distributed object system that uses an existing, specialized
server connected by a protocol gateway. Examples of specialized servers include Lightweight
Directory Access Protocol (LDAP) directory servers, mainframe database servers, and
messaging servers. A single client object manages interactions with the end user and
communications with one or more back-end servers.

___ Application
Logic

Application Server

Specialized
Server

/

4

Protocol
Gateway

A 4

Figure 2: Distributed Object System

We have now provided a characterization of both a browser and non-browser design for
implementing distributed systems. In the following section we will consider how these
approaches address quality-of-service issues.

CMU/SEI-98-TR-010 5

6 CMU/SEI-98-TR-010

3 Issues

In this section, we examine quality of service and other issues that influence the decision to
select between browser and non-browser design solutions.

3.1 Portability (Crossware)

At a time when technologies such as the Java programming language and CORBA are
making the dream of a homogeneous computing environment a reality [Wallnau 97b],
browsers are having the opposite effect of fragmenting the market. Competing browsers
provide significantly different capabilities. The two principal browsers in use today,
Microsoft Internet Explorer (IE) and Netscape Navigator, differ significantly in the manner in
which they support key capabilities such as digital certificates, extending the sandbox, and
client-side scripting. Disparate functionality needs to be accommodated in the design and
implementation of browser-based software systems resulting in duplication of code and
redundancy of effort.

Browser vendors such as Netscape argue that providing a browser environment that is
(roughly) equivalent across most hardware platforms enables the development of crossware
applications — applications that run “cross-everything.” However, based on statistics
gathered from the BrowserWatch web site [Browser], Netscapé Navigator has only 54% of
the browser market across all platforms (Internet Explorer has 31.8%). Meanwhile, 84% of
desktops run Microsoft operating systems (while the remaining 16% are all other platforms).
These numbers suggest that a broader market exists for desktop applications that run directly
on Microsoft operating systems than “crossware” applications that are confined to a
particular browser.

While it may be possible to develop “portable” active content that runs across a variety of
different browsers, it may not always be easy — particularly if the active content needs to
access local desktop resources. Alternatively, Java provides a standard, controlled
environment for developing applications that run on a wide variety of platforms, including
the various Microsoft operating systems.

3.2 Performance

Browsers are resource-intensive software components that add an additional layer of
functionality between the operating system and application. Figure 3 illustrates a measure of
this overhead by showing the memory used by a Java applet under Internet Explorer and
Navigator compared to a stand-alone Java application on a Windows NT 4.0 system. Both

CMU/SEI-98-TR-010 7

Internet Explorer and Navigator require considerably more memory than the stand-alone Java
application. If the memory required by the browser was completely ignored, the amount of
memory required by the browser’s Java Virtual Machine (JVM) to run the downloaded applet
is still greater than the memory required by the stand-alone Java application.

16.0

14.0

-
o
o

-
=3
o

ol
o

6.0 1

Memory Allocation (MB)

4.0

2.0+

0.0+

Netscape Communicator 4.04
Platform

[2 Browser Memory Allocation __®Java Memory Allocation

Figure 3: Memory Usage

Browser-based applications need to be downloaded each time a user accesses the
application’s Uniform Resource Locator (URL). This constrains the design by severely
restricting the size of applications that can be downloaded and run on the client desktop,
because the download time — particularly over modems and congested Internet service
providers (ISPs) — can be prohibitive.

The development of Java “orblets™ illustrates this problem. An orblet is a client of an object
request broker (ORB) service. When developing an orblet, the vendor’s ORB classes or jar
file must be downloaded to the client platform.! For version 3.0 of Visigenics ORB, this jar
file is 2.2 MB (2,301,416 bytes). Assuming this file is to be transferred over a dedicated 56
Kbps modem, we can use the formula in Equation 1 to predict download time.?

! Netscape tried to solve this problem by integrating the VisiBroker ORB into Netscape
Communicator. Unfortunately, if the browser does not support the correct version of VisiBroker, or the
orblet uses a different vendor’s ORB; it may still be necessary to download these libraries.

? The point-to-point protocol (PPP) overhead factor is derived from a discussion of serial line
throughput factors described in W. Richard Stevens’s book on Transmission Control Protocol/Internet
Protocol (TCP/IP) [Stevens 94].

8 : CMU/SEI-98-TR-010

57,344 bits per second / 10 bits per byte = 5,734 bytes/second

Bytes transferred * PPP Overhead / (bytes/second) = down load time (seconds)
2,301,416 * 1.02 /5,734 = 409 seconds =6.82 minutes

Equation 1: Download Time

To better illustrate performance issues on a typical Intranet, we examined the performance of
a Java applet vs. a Java application running over a local 10 Mbps Ethernet-based local area
network (LAN) using a Solaris 2.5.1 server and a Windows NT 4.0 desktop. Figure 4 shows
the average start-up time (using the wall clock) for a Java applet running under Netscape 4.04
and a native Java 1.2 application running on the Java Runtime Environment JRE).> Start-up
times for the Java applet were recorded using three different scenarios: cold start, hard reload,
and soft reload. Cold start was measured from the initial server connection to the time the
applet was displayed in the browser. Hard reload is measured from the time Shift-Reload is
pressed until the applet redisplays (Shift-Reload causes Navigator to retrieve a fresh version
from the network server regardless of whether the page has been changed, effectively
bypassing the cache). Soft reload is measured from the time the Reload button is pressed until
the applet re-displays. Reload displays a fresh copy of the current Navigator page. Navigator
checks the network server to see if the page has changed. If there is no change, the fresh copy
is retrieved from the cache. If there is a change, the fresh copy is transmitted from the
‘network server.

In addition to measuring the performance of the Java applet for cold start, hard reload, and
soft reload, we also varied the installation of the Visigenics jar file “vbj30.jar” containing the
client-side CORBA classes.* In the first case, we pre-installed the vbj30 jar file in the
CLASSPATH for Netscape Navigator on the client’s desktop. In the second case, classes
contained in the jar file were expanded. Finally, we conducted the experiment with no pre-
installation — requiring that the jar file be installed on demand. By definition, the Java
application and associated libraries are pre-installed; therefore we only considered this case
for the application.

? The JRE is the minimum standard Java platform for running Java programs containing the Java
virtual machine, Java core classes, and supporting files. The JRE does not contain any of the
development tools (such as appletviewer or javac) or classes that pertain only to a development
environment.

* According to Visigenics, the vbj30.jar file has been divided into three separate files: vbjapp.jar,
vbjorb.jar, and vbjtools.jar, to provide a lighter weight client footprint.

CMU/SEI-98-TR-010 9

®

8

»
ke

-]

3

Average Number of Seconds to Startup

«

vbi30.jar preinstalled vbj30.jar expanded vbj30.jar on-demand
jar file
Il Netscape 4.04 Cold Start B Netscape 4.04 Hard Reload O Netscape 4.04 Soft Reload B Java Application |

Figure 4: Average Start-Up Time (Java Applets vs. Java Applications)

Figure S shows the average number of Ethernet packets transmitted between the client and
server for both the Java applet and Java application. This includes both HTTP and Internal
Inter-ORB Protocol (IIOP) traffic. Measurements for the Java applet were taken for the three
cases discussed earlier. Figure 6 shows the average number of bytes transmitted over the
Ethernet for both the Java applet and Java application. This number includes Ethernet, IP,
TCP, UDP (User Datagram Protocol), IIOP, and HTTP headers as well as data.

2059 2q35

g

g

g

g

Average Number of Packets Transmitted
g

g

76

=]

vbi30.jar preinstalled vbi30.jar expanded vbj30.jar on-demand
jar file

®_Netscape 4.04 Cold Start Netscape 4.04 Hard Reload A Netscape 4.04 Soft Reload ®Java Application

Figure 5: Average Number of Packets Transmitted (Java Applet vs. Java
Application)

10 CMU/SEI-98-TR-010

§

§

g

g

§

g

Average Number of Kilobytes (Kb) Transmitted

61 %57 .0 44 44 033,

vbij30.jar preinstalled vbi30.iarlexpanded vbi30.jar on-demand
jar file

PNetscape 4.04 Cold Start B Netscape 4.04 Hard Reload ONetscape 4.04 Soft Reload mJava Application I

Figure 6: Average Number of Bytes Transmitted (Java Applet vs. Java Application)

3

Performance, particularly start-up time, is a major problem with a browser-based approach.
Most human factors guidelines recommend start-up times of under one minute, but simply
downloading one of the libraries required by the example application in this section exceeds
6 minutes over a 56 Kbps modem. While performance is better in a typical LAN
configuration, measured start-up times for an applet were 18 times slower in some cases than
a functionally equivalent Java application.

Slow start-up times require that systems be designed to minimize the amount of logic
downloaded to the client. This is an artificial design constraint that inhibits the proper

separation of functionality between the client and server processes in a distributed system
[Seacord 90].

3.3 Functionality

An obvious advantage of using browser technology for your client application is that the
technology provides support for processing hypertext documents specified in HTML. HTML
provides a simple means of adding text and graphics to an application and for specifying
links between information. The browser provides mechanisms for viewing and navigating
through a hypertext document.

The extent to which hypertext is actually used in a graphical user interface (GUI) varies
considerably between clients. Hypertext provides a relatively quick mechanism for providing
static content, such as text and graphics, around interactive content. Static content can also be
added using static, GUI “label” widgets (in X/Motif parlance). Widgets can display fixed
graphics or text (in a variety of fonts and formats). Adding static content programmatically
using GUI widgets is more development intensive than providing HTML markup.

CMU/SEI-98-TR-010 11

In addition to providing static content, hypertext is useful in more traditional roles as well,
such as providing online, interactive help. Netscape, for example, provides a software
development kit called “NetHelp” for developing and viewing HTML-based online help.
Microsoft has also made the decision to replace WinHelp with an entirely new help-authoring
system based on HTML and other Web standards, called HTML Help [Swenson].

Assuming that a valid requirement to integrate hypertext exists, the question becomes, What
is the best mechanism for providing this content? Three common approaches used for
integrating hypertext content — document-based, remote control and component-based —

are shown in Figure 7.

Application Application

Commands

a) document-based b) remote control c) component-based

Figure 7: Approaches for Integrating Hypertext Content

The document-based approach assumes the use of a browser. The HTML document becomes
the principal container that can hold both hypertext and active content. The component-based
approach incorporates an HTML component or control within a client. The HotJava HTML
component, for example, is a JavaBean that parses and renders HTML that can be
incorporated into an application. In the remote-control approach, the application runs as a
separate process from the browser and sends commands to the browser in response to help
requests by the end user. The largest problem with the remote-control approach is
coordinating activity between the browser and the application, as both systems have
independent user controls.

The decision to select a browser-based approach should not be based solely on the fact that
HTML content is used in the implementation. The correct approach for integrating static
content depends largely on the application, but we would suggest the following. If the
application is largely a hypertext document, with some interactive content to enhance the
presentation or usability, then it may make sense to take a document-based approach. If the
system is principally an interactive application, it may make more sense to take a component-
based approach to integrating HTML content. The remote-control approach can be used when
a component-based approach makes the most sense, but a suitable component is unavailable.

12 ’ CMU/SEI-98-TR-010

3.4 Security

Browsers must be careful to restrict access to local resources such as a computer’s registry of
installed software, file system, or debugging software from downloaded, active content.
Destructive programs, such as a Trojan horses, can tamper with or destroy local data or
extract sensitive information once they have been downloaded or installed onto a system and
allowed to execute. One approach for protecting local resources is to limit access of the
active content to within a sandbox. The sandbox provides a restricted environment in which
the active content may safely execute. With Java enabled (e.g., in the Netscape advanced
preferences dialog), browsers trust the Java sandbox for any applet.

While this approach may provide an adequate environment for small applets, it is typically
too restrictive for the implementation of a large, complex application. To circumvent this
problem, browser vendors have invented a variety of mechanisms to extend the sandbox.
Signed applets under Netscape can request specific privileges using the Netscape
Capabilities Classes. These classes allow the applet to request, and the user to grant,
permission for the applet to perform specific operations outside of the sandbox. Under
Microsoft’s Internet Explorer, access to native resources is provided through trust-based
security for Java [Microsoft 97] or simply circumvented through ActiveX controls. The trust-
based security model provides fine-grained administration of the privileges granted to Java
applets and libraries based on zones. Zones allow related sites to be administered as a group.
There are five default security zones defined in the trust-based model for IE 4.0: Local
Machine, Intranet, Trusted Web, Internet, and Untrusted Web Sites. The idea is to set
nonrestrictive security options for trusted areas and, at the same time, have very safe
(restrictive) security options elsewhere.

Browsers have a history of alternately disallowing then allowing applications to access local
machine resources. Browser vendors cannot seem to decide if they want to allow downloaded
applications to access local machine resources or not. The root cause of this conflict stems
from the browser’s dual roles as hypertext viewer and application development framework.
As a hypertext viewer, it is important that the browser not allow downloaded application
programs to access local machine resources because of the security risks involved. As an
application framework, it is critical that downloaded applications can access local resources
to implement advanced application functionality. Because of these conflicting roles,
developers are forced to deal with an assortment of specialized security mechanisms and
APIs to access functionality outside of the sandbox. This problem is further exasperated by
the lack of a standard approach for providing this capability.

In general, security mechanisms for extending the sandbox rely on object signing using
digital certificates. Signing an object (e.g., applet) using a developer’s digital certificate
identifies the signer and provides tamper-resistant packaging. However, object signing and
digital certificate technologies from JavaSoft, Netscape, and Microsoft are largely
incompatible. For code signing, Netscape provides signtool for use in Netscape
Communicator 4.0. Microsoft offers Authenticode for use in Microsoft’s Internet Explorer

CMU/SEI-98-TR-010 13

3.0 & 4.0. JavaSoft’s javakey and jar are used in the JDK appletviewer & the HotJava
browser. Netscape’s digital certificates can sign Java applets, JavaScripts, plug-ins, or any
other kind of code object packaged within a .jar or .zip file. Netscape certificates cannot be
used for code signing using JavaSoft’s javakey or Microsoft’s Authenticode. Microsoft
Authenticode certificates can sign 32-bit .exe, .cab, .ocx, and .class files but cannot be used
for code signing by JavaSoft’s javakey or Netscape’s signing tool. Microsoft’s Authenticode
or Netscape’s signing tool cannot use certificates generated by JavaSoft’s javakey.

As indicated by the preceding discussion, object-signing technology is still immature and
digital certificate technology is in need of further standardization. If the distributed system
you are developing has strict security requirements, implementing a browser-based solution
requires that you wade into this quagmire and hope you have sufficient stature to keep your
head above water.

Digital certificates can also be used for identification and authentication. Identification allows
a user to present their credentials to a system. Authentication allows the system to verify that
presented credentials are authentic. Once a user’s identity is authenticated, the system can
determine the user’s authorization.

In a browser-based design, identification and authentication are managed between the
browser and the HTTP server. The HTTP server interrogates the browser for a client
certificate, validates the certificate, and (optionally) looks up the user in a directory server.
Authorization for access is granted if the user credentials are found in the directory server.
This capability is administered through the HTTP server and does not require the
development of custom code.

In a non-browser design, code for certificate manipulation and authentication must be
developed. The development of an identification and authorization capability is supported by
means of vendor APIs and libraries. Java 1.2 supplies a Certificate API for certificate
management; the Netscape LDAP Java SDK can be used for searching the LDAP directory,
and encryption and decryption can be performed using patented algorithms from RSA
(JSAFE).

An advantage of the non-browser approach is that the authentication policy can be specified,
with the corresponding disadvantage that it must be coded. Specifying an authentication
policy is necessary if the system has unique authentication requirements. A custom
authentication policy has the advantage of being less subject to the attention of hackers, who
are likely to target a broadly used authentication policy. This advantage can be quickly lost if
the authentication policy is not well considered.

A further disadvantage of a browser-based approach is that to support system auditing, user
credentials must be exported from the HTTP server to the system. Under the Netscape
Enterprise Server, this is done using Server-Side JavaScript or CGI environment variables.

14 ' CMU/SEI-98-TR-010

These mechanisms introduce substantial design constraints and add overhead to solve a
relatively simple problem. '

3.5 Human Factors

One of the greatest challenges in designing graphical user interfaces is making the best use of
limited display “real estate.” When developing a browser-based application, the user interface
is limited in size by the real estate required by the browser’s window and controls. Even
when the majority of these controls are hidden, the real estate required by the browser
detracts from the real estate left to the application, particularly on small displays such as
those common on laptops and hand-held devices.

A typical browser user interface includes a menubar and toolbar that provides commands for
filing, editing, viewing, and navigating through a series of Web pages. These commands
control functionality in the browser that is independent of any application logic that may be
present on any given page. The active content within a page may also have GUI controls,
including their own menubar and toolbar. These controls can be used to access commands
that interact directly with the application logic, are aware of the application’s state, and have
access to application data.

From a programming perspective, the above design is flawless. Browser controls are used to
interact with the browser, and application controls are used to interact with the active content
within the browser. The problem, from a human factors perspective, is that this arrangement
is not always apparent to the end user. Consequently, the end user is likely to press browser
buttons such as Back, Forward, or Stop in the browser toolbar to interact with the application
content. Depending on the application, this can have disastrous effects.

Anecdotal evidence of this problem was gathered from a logistics system in which end users
would press the Stop button on the browser in an attempt to end queries that appeared to be
hung. Pressing the stop button in this case caused the client to go away but had no effect on
the server, which continued to process the query with no client to receive the results. Dealing
with numerous customer complaints and reworking the system to handle this special case
resulted in three staff months of diagnosis and repair. In general, unexpected interactions
between browser controls and application logic can confuse end users and result in critical
errors.

A solution to both these human-factor problems is to launch the active content in a
completely separate window. The ability to do this should be a requirement of the mechanism
used to extend the browser-based system. However, the requirement to run active content in a
separate window and completely independent of browser controls thoroughly refutes the
argument for using browsers because they provide a familiar user interface.

CMU/SEI-98-TR-010 15

3.6 Distribution and Installation

Prior to the explosion of the World Wide Web (WWW) and browsers, most companies
distributed software on either floppy or CD-ROM, depending on the size of the distribution.
Some companies provided customers with an account name and password from which they
could download products from an FTP (file transfer protocol) site.

With the advent of the World Wide Web a new model has evolved. Rather than purchase
products, users can subscribe to a site or service. Active content in the form of Java applets or
ActiveX controls is downloaded at each user access. This model is referred to as on-demand
installation.

On-demand installation has a number of advantages, chief among them being that
downloaded content is current. Ignoring problems with caching, browsers guarantee that both
active and static content is current by going back to the source for each user request. Another
advantage of on-demand installation is that the disk space used by the client can be
automatically reclaimed. The principal disadvantage of on-demand installation includes
longer start-up times and the problem that a browser can download only certain types of
active content. For example, it is possible to write a Java applet that can be downloaded and
executed by both Microsoft IE and Netscape Navigator, although it is necessary to
accommodate differences in the Java Virtual Machine (JVM) [Zukowski 97].% IE can also
download and execute ActiveX controls. These controls can be written in a variety of
languages, including Visual Basic and C++, but must conform to the ActiveX model. Since
ActiveX controls are compiled objects, they can run only on the processor for which they
were compiled, and only within IE. IE and Navigator provide browser-side scripting
languages — instructions to the browser embedded in HTML using the SCRIPT element
[Raggett 97]. Although both browsers support client-side scripting languages, there are
differences between Microsoft’s VBScript and Netscape’s client-side JavaScript.

To address problems of performance and functionality in distributed system development, it
is often necessary to install software on the client platform in addition to software installed
on demand. We have previously discussed performance problems in downloading large Java
class files such as the VisiBroker jar file. Pre-installing the classes on the client machine, for
numerous or large files, can help reduce long start-up times, although doing so has further
implications that we examine later in this report.

3> Microsoft, deciding that the core Java class libraries were insufficient for its needs, added about 50
methods and 50 fields into classes within the java.awt, java.lang, and java.io packages. If a developer
relies on these changes, or inadvertently uses them, the program will work only within Microsoft’s
Java system. In addition, a program developed outside of Mocrosoft’s development environment will
expect a certain core APL Since the core API is different from the one within Microsoft’s environment,
the program may not work under the Microsoft JRE. The Netscape Navigator Java 1.1 patch Preview
Release 2 also fails to fully implement the Java 1.1 specification.

16 CMU/SEI-98-TR-010

It may be necessary to pre-install libraries on the desktop to support functionality that is
otherwise unavailable. For example, to provide a secure connection between the VisiBroker
client and the CORBA server, we would like to use the Secure Socket Layer (SSL). Since the
SSL library supplied by Visigenics is implemented in C, it must be pre-installed on the client
machine. Plug-ins, another common mechanism for extending the functionality of the
browser, also require an installation step.

An alternative installation approach can be used in a non-browser design. Web pages can be
provided from which an end user can download the client application. Typically, the
distribution file is saved as a compressed archive to reduce the time required to download the
file. To install the program, the administrator clicks on the link to the file on the Web page.
The browser then prompts the administrator for a location to store the downloaded file. On
Windows desktops, the file may be stored as a self-extracting, executable archive. Double
clicking this archive causes the program to extract itself and run Install Shield. Under UNIX,
the file is normally distributed as a compressed tar file. Compression is usually performed
with either the gunzip or compress utility. The corresponding utility is used to decompress the
file, and the file is then untarred. The system administrator is normally required to complete
the installation by running an installation script.

On-demand installation has advantages in ease of use, since no installation steps are required
by the end user except specifying the correct URL; however, on-demand installation has the
disadvantage of long start-up times. More complex systems that require the use of client-side
libraries (e.g., for security) or browser plug-ins have no choice but to go through an
installation process.

3.7 Upgrading and Component-Based Development

On-demand installation simplifies the problem of providing software updates, at least from
the point of view of the vendor. New versions of the product installed on the vendor’s Web
site are automatically downloaded and accessed by customers the next time they use the
application. Software updates downloaded to the client machine are able to communicate
directly with updated versions of servers at the vendor’s site.

The principal problem with this approach is that the customer no longer has a say in the
decision to upgrade a system. Under this model, it is normal for upgrades to occur overnight
and without warning. This can cause immediate problems: end users are caught unaware of
major changes in functionality and interface and are unable to adequately prepare or train
prior to the upgrade. Documented processes and procedures can be rendered instantly
obsolete.

Within the commercial world, developing component-based systems can be viewed as a
“just-in-time” programming model where components move along an assembly line from the
developer through the integrator to the end user, and functionality is added at the latest
possible point along this line. Component developers build large-scale components that

CMU/SEI-98-TR-010 17

provide services that appeal to a large market; integrators extend and combine the
components to build systems; and end users and their support staff tailor the system for local

needs [Vigder 96].

Automatic upgrades limit a developer’s ability to integrate a system’s functionality as a
component of a larger system. Tools such as the Web Interface Definition Language (WIDL)
allow the resources of the World Wide Web to be described as functional interfaces that can
be accessed by remote systems using standard Web protocols [Allen 97]. Once functionality
has been incorporated into a component-based system, either directly or through the use of
WIDL or a similar tool, changes in the functionality would disrupt the operation of the
overall system. Consequently, it is difficult, if not impossible, to use a system that is
automatically upgraded as a component of larger systems, thus creating a further inhibitor to
the development of component-based systems.

The alternative to on-demand installation and automatic upgrades requires that the users
upgrade their systems. This approach eliminates the above-described disadvantages
experienced by the users while shifting the problem to the vendors. The vendor now has no
control over when users will upgrade their systems. This puts vendors in the awkward
position of supporting obsolete versions of client software beyond a reasonable period.
Upgrades to the server can be inhibited or prevented by a need to maintain compatibility with
the installed customer base.

A compromise solution that can be implemented in the design of non-browser distributed
systems provides for negotiation between the client and server concerning discrepancies in
version numbers. For example, a tool provided by the National Software Data and
Information Repository (NSDIR) [Card 96] used a four-digit version number scheme to
characterize upgrades. Version numbers downloaded from the server are compared to version
numbers on the client. If there is a discrepancy the client notifies the user if the change
represents a maintenance release, inaccessible capabilities, reduced functionality, or a change
in the application protocol stream. Maintenance releases and inaccessible capabilities can
generally be ignored without affecting a system for which this may be a component. Reduced
functionality may affect the overall system, while a change in protocol will require an
upgrade. The user (or integrator) has the ability to upgrade based on their own drivers, while
the vendor has a better lever to move customers onto newer versions.

3.8 Runtime Configuration Management

In the section on distribution and installation, we argued that there is often a requirement to
pre-install software on the client platform when building browser-based distributed systems.
Requiring a pre-installation step for performance, functionality, or other reason means that
there are now software components installed on the client machine. These versions evolve
over time, but may be upgraded at will by the customer. At the same time, downloadable
active content is updated by the vendor based on availability. This executable content must
determine which versions of the pre-installed components are available and if it can work

18 CMU/SEI-88-TR-010

with them or if newer versions must first be installed. Implementing this solution requires
that the executable content operate outside of the sandbox, requiring permissions that are
considered high risk. This mixed model of pre-installation and on-demand installation creates
combinatorial problems in runtime configuration management that outweigh any advantage
in the browser model.

Another configuration management problem is the tendency of end users to extend,
customize, and upgrade their browsers. Browsers are general-purpose tools used to access
data and information services over the Internet. As such, the end user is given endless
opportunities to install plug-ins, patches, and upgrades. Each of these changes has the
potential to affect other applications that run within the browser. For example, during 1997
Microsoft Corporation updated the Authenticode security module installed with Microsoft’s
Internet Explorer from version 1.0 to 2.0. Notices regarding this update were embedded in
Web pages at Microsoft’s Web Site as an embedded JavaScript routine. Upon reaching one of
those pages, the client’s browser would execute the JavaScript routine, and if Authenticode
1.0 was detected, the script would display a dialog box suggesting the end user upgrade by
pressing the Yes button. The irritating behavior of this “nag-ware” would continue until the
end user gave in and upgraded the client browser’s security component to the current version.
In one case the result of this upgrade completely disabled a functioning Java/CORBA orblet
— with no way of reversing the upgrade without completely removing the browser from the
system and re-installing a previous release of the browser (before Authenticode version 2.0
was introduced).

Problems caused by user customization of browsers may be further exacerbated by
Netscape’s recent announcement that they intend to make source code available for
Communicator 5.0. Distributing source code for browsers will allow unbounded
customization to take place. From the perspective of developers of browser-based systems,
this is akin to shipping the source code for their systems, and then being required to support
any modification an end user might make.

3.9 Licensing

Vendors have been (relatively) quick to recognize the necessity of supporting browser-based
designs by offering server-based licensing. Server-based licensing allows unlimited access
by a potentially unknown collection of end users. However, this same consideration has not
been generally extended to client/server or distributed object systems.

The architecture of a system is easily influenced by deployment costs driven by the licensing
scheme of COTS vendors. This can best be shown by an example. Figure 8 shows a browser-
based scenario (A) for deploying a CORBA-based applet and a separate scenario (B) in
which a Java application communicates directly with the ORB on the server.

CMU/SEI-98-TR-010 19

vbj30.jar vbj30.jar
(cached) (resident)

HTTP Transfer

vbj30.jar
(resident)

Scenario A Scenario B

Figure 8: Licensing Scenarios

In both scenarios the classes contained in the vbj30.jar file are installed on the desktop and
run locally. In scenario A, the classes are installed on demand by the server, stored in the
browser’s cache, and eventually removed by the browser. In scenario B, the classes are pre-
installed on the desktop.

Because it is possible to distinguish between these scenarios, it is likely that some vendor’s
software licenses do make this distinction. If the cost of deploying a browser-based design is
considerably lower than a similar non-browser-based design, it is unlikely that the
development organization would incur the added costs to deploy a non-browser-based
solution.

3.10 Versions

Beta versions of Java 1.1 were available in December of 1996, and it was generally available
in the first quarter of 1997. However, as of March 1998, full 1.1 support is still not available
in the standard release of Netscape Communicator. In some sense, this is the traditional
COTS problem of incompatible versions, but in another sense it is worse. When developing a
C++ application, for example, language functionality is available to the developer as soon as
the compiler version is released. If necessary, language libraries can either be statically linked
with the executables or installed on the client machine. Likewise, applications developed in
Java can be installed, if necessary, with the corresponding JRE version [Sun]. However, when
running Java applets within a browser, the browser dictates the Java Development Kit (JDK)
version and, therefore, which software is compatible.

In response to this problem, Netscape plans to re-architect its future client software products
to support compatible implementations of a Java Virtual Machine from industry leaders such
as Sun, IBM, and other operating system vendors. Netscape plans to provide an OpenJava

20 CMU/SEI-98-TR-010

* API designed to make it easier for vendors to integrate their native Java VM into Navigator

or Communicator.

Microsoft has no public plans to change their current strategy of maintaining their own
version of the Java programming language as a proprietary Windows development tool.

CMU/SEI-98-TR-010

21

22

CMU/SEI-98-TR-010

4 Conclusions

In a browser-based system, the combination of the browser and HTTP server forms the
backbone of the system. While this backbone provides some flexibility and extensibility, it
still provides a rigid framework that can only be bent so far without breaking. Functionality
can be added only if the designers of the browsers anticipated the needs of your application
directly or indirectly by providing appropriate hooks.

A browser-based design may be appropriate if the requirements of the system conform
naturally to a browser infrastructure. For strictly hypertext systems, Internet browsers are an
ideal solution. However, a browser-based design is not appropriate under the following
conditions:

e The desktop client has a large, complex user interface.
e The desktop client requires access to local machine resources.
e Fast application start-up time is an important requirement.

e The system must communicate securely across multiple protocols, browsers, and servers.

Distributed object systems offer an alternative to a browser-based design. A distributed object
system can offer faster start-up times and support larger, more complex user interface
designs. The application can be implemented in Java for maximum portability, using either
Java Remote Method Invocation (RMI) or CORBA for communication with back-end
servers. Software development kits are available to provide safe, secure communications
between distributed objects.

The use of a browser-based infrastructure is a major decision that is going to influence and
limit the overall architecture and design of your distributed system. As such, it is critical that
this is an informed, considered decision.

CMU/SEI-98-TR-010 23

24

CMU/SEI-98-TR-010

References

[Allen 97]
[Browser]
[Card 96]

[Microsoft 97]

[Raggett 97]

[Seacord 90]

[Stevens 94]

[Sun]

Allen, Charles Axel. “Automating the Web with WIDL.” World
Wide Web Journal (W3J), Volume 11, Issue 4 (Fall 1997).

BrowserWatch Stats Station [online].Available WWW<URL.:
http://browserwatch.internet.com/stats/stats.html>.

Card, D.N.; Hissam, S. A; & Rosemeier R.T. “National Software
Data and Information Repository.” CrossTalk 9, 2 (February 1996).
Software Technology Support Center. Available WWW <URL:
http://www.stsc.hill.af mil/CrossTalk/1996/feb/national.html>.

Trust-Based Security for Java (Microsoft white paper) [online],
Available WWW: <URL: http://www.microsoft.com/java/security/>
(April 1997).

Raggett, Dave. Client-Side Scripting and HTML [online], (W3C
Working Draft). Available WWW <URL:
http.//www.w3.org/pub/WWW/TR/WD-script-970314> (March 14,
1997).

Seacord, R.C. “User Interface Management Systems and
Application Portability.” IEEE Computer 23, 10 (October 1990):
73-75.

Stevens, W. Richard. TCP/IP Illustrated, Volume 1 Protocols.
Addison-Wesley, 1994 (ISBN 0-201-63346-9).

Sun Microsystems. The Java Runtime Environment Notes for
Developers [online]. Available WWW <URL.:
http://java.sun.com/products/jdk/1.1/runtime.html>.

CMU/SEI-98-TR-010

25

[Swenson]

[Vigder 96]

[Wallnau 97a]

[Wallnau 97b]

[Zukowski 97]

Swenson, John. “Making the Big Move to HTML Help.” MSDN
Online. Available WWW <URL.:
http://www.microsoft.com/msdn/news/htmlhelp.htm>

Vigder, Mark R.; Gentleman, W. Morven; & Dean John C. COTS
Software Integration: State of the Art [online]. Software
Engineering Group (NRC No. 39198). Available WWW <URL:
http://wwwsel .iit.nrc.ca/seldocs/cotsdocs/NRC39198.pdf> (January
1996).

Wallnau, Kurt; Morris, Edwin; Feiler, Peter; Earl, Anthony; &
Litvak, Emile. “Engineering Component-Based Systems with
Distributed Object Technology,” 58-74. Proceedings of Worldwide
Computing and Its Applications. Tsukuba, Japan, March 10-11,
1997.

Wallnau, Kurt; Weiderman, Nelson; & Northrop, Linda. Distributed
Object Technology with CORBA and Java: Key Concepts and
Implications (CMU/SEI-97-TR-004, ADA 327035). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1997.
Available WWW <URL.:
http://www.sei.cmu.edu/publications/documents/97 .reports/97tr004/
97tr004abstract.htrl>.

Zukowski, John. “How to Avoid Potential Pitfalls of Microsoft’s
Non-Standard SDK for Java.” Java World, November 1997.
AvailableWWW <URL: http://www.javaworld.com/javaworld/jw-
11-1997/jw-11-pitfalls.html>.

26

CMU/SEI-98-TR-010

REPORT DOCUMENTATION PAGE OMB Mo 07080168

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collaction of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 1998 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Browsers for Distributed Systems: Universal Paradigm or Siren’s Song? C — F19628-95-C-0003

6. AUTHOR(S)
Robett C. Seacord, Scott A. Hissam

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
H ¢ ; REPORT NUMBER
Softwar.e Englneenqg Insftltute CMU/SEL98.TR-010
Carnegie Mellon University
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
HQ ESC/DIB AGENCY REPORT NUMBER
5 Eglin Street ESC-TR-98-010
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT 12.B DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)
Web-based browsers are quickly becoming ubiquitous in the workplace. Software development managers
are quick to incorporate browsers into a broad range of software development projects, often
inappropriately. The purpose of this technical report is to examine the technical issues relevant to
incorporating browsers as a component of a commercial off-the-shelf (COTS)-based solution and to
establish a set of guidelines to help determine when a browser-based solution is appropriate or when an
alternate solution may be better suited to the application. Issues examined include portability, performance,
functionality, security, human factors, distribution, installation, upgrading, component-based development,
runtime configuration management, and licensing.

14. suBJECT TERMS commercial off-the-shelf products, component-based development, 15. NUMBER OF PAGES
30
configuration management, distributed systems, licensing, Web-based browsers 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 23¢-18
298-102

